Steering Photoelectrons Excited in Carbon Dots into Platinum Cluster Catalyst for Solar‐Driven Hydrogen Production
نویسندگان
چکیده
In composite photosynthetic systems, one most primary promise is to pursue the effect coupling among light harvesting, charge transfer, and catalytic kinetics. Herein, this study designs the reduced carbon dots (r-CDs) as both photon harvesters and photoelectron donors in combination with the platinum (Pt) clusters and fabricated the function-integrated r-CD/Pt photocatalyst through a photochemical route to control the anchoring of Pt clusters on r-CDs' surface for solar-driven hydrogen (H2) generation. In the obtained r-CD/Pt composite, the r-CDs absorb solar photons and transform them into energetic electrons, which transfer to the Pt clusters with favorable charge separation for H2 evolution reaction (HER). As a result, the efficient coupling of respective natures from r-CDs in photon harvesting and Pt in proton reduction is achieved through well-steered photoelectron transfer in the r-CD/Pt system to cultivate a remarkable and stable photocatalytic H2 evolution activity with an average rate of 681 µmol g-1 h-1. This work integrates two functional components into an effective HER photocatalyst and gains deep insights into the regulation of the function coupling in composite photosynthetic systems.
منابع مشابه
Concurrent photocatalytic hydrogen production and organic degradation by a composite catalyst film in a two-chamber photo-reactor.
A novel visible light-driven photocatalyst film, MoS₂/Ag/TiO₂, was synthesized on a glass-fiber membrane. The composite catalyst film had a multi-layer structure with Ag as nanoconjunctions between the MoS₂ and TiO₂ layers. The catalyst film performed well for both photocatalytic hydrogen production and organic degradation in a two-chamber photo-reactor under either solar or visible light. Hydr...
متن کاملSelf-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles.
A natural self-regeneration step for urea derived graphitic carbon nitride with platinum nanoparticles is found by simply opening the system to air in the dark under ambient conditions, following its solar-driven hydrogen production. The produced peroxides deactivate the graphitic carbon nitride. Release of weakly bound peroxides on the polymeric semiconductor surface is a crucial process for r...
متن کاملElectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملNone-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review
Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater. Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...
متن کاملSolar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride–Molecular Ni Catalyst System
Solar water-splitting represents an important strategy toward production of the storable and renewable fuel hydrogen. The water oxidation half-reaction typically proceeds with poor efficiency and produces the unprofitable and often damaging product, O2. Herein, we demonstrate an alternative approach and couple solar H2 generation with value-added organic substrate oxidation. Solar irradiation o...
متن کامل